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Abstract—Measurements of non-methane hydrocarbons, as well as ozone, meteorological and trace gas
data, made at four rural sites located within the southeastern United States as a part of the Southern
Oxidants Study are compared. The C,—C,, hydrocarbons were obtained during the 1200-1300 local time
period, once every six days from September 1992 through October 1993. The light molecular weight alkanes
(ethane, propane, n-butane, iso-butane, ethene and acetylene) display a seasonal variation of a winter
maximum and summer minimum. Isoprene was virtually non-existent during the winter at all sites, and
averaged from 9.8 ppbC (Yorkville, Georgia) to 21.15 ppbC (Centreville, Alabama) during the summer. The
C, o terpene concentration was largest during the summer period with averages ranging between 3.19 ppbC
(Centreville, Alabama) and 6.38 ppbC (Oak Grove, Mississippi); winter time concentrations ranged from
1.25 to 1.9 ppbC for all sites. Propylene-equivalent concentrations were calculated to account for differences
in reaction rates between the hydroxyl radical and individual hydrocarbons, and to thereby estimate their
relative contribution to ozone, especially in regard to the highly reactive biogenic compounds such as
isoprene. The propy-equivalent concentrations from the biogenics represent at least 65% of the total
non-methane hydrocarbon sum at these four sites during the summer season. A plot of ozone versus

NO,-NO highlights the NO, limited relationship of this region. € 1997 Elsevier Science Ltd.

Key word index: Speciated non-methane hydrocarbons, rural, biogenics, annual measurements.

1. INTRODUCTION

It has long been established that non-methane hydro-
carbons play an important role as precursors to ozone
and other secondary photochemical pollutants.
Ozone is formed in the complex reaction mechanism
that involves the volatile organic compounds (VOCs)
and oxides of nitrogen (NO,) in the presence of sun-
light. Since the passage of the 1970 Clean Air Act
amendments, regulatory efforts to comply with the
0.12 ppmv National Ambient Air Quality standard
for ozone have been inadequate (NRC, 1991; Dimit-
riades, 1989). Ozone exceedences continue to be a ma-
jor problem, especially in the southeast region of the
United States. Studies have shown that the Southeast
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is a region where high concentrations of ozone accu-
mulate in both rural and urban areas (SOS, 1995). The
contribution of naturally emitted volatile organic
compounds (VOCs) to ozone formation in both urban
and rural areas has become of greater concern within
the last decade (Lamb et al., 1987). Measurements of
biogenically emitted VOCs such as isoprene suggest
that these compounds contribute to high ozone con-
centrations in urban areas affected by NO, (Trainer et
al., 1987; Chameides et al., 1988; NRC, 1991). Various
studies have measured isoprene and other ambient
hydrocarbon concentrations in rural or remote sites
(Lawrimore et al., 1995; Andronache et al., 1994; Cha-
meides et al, 1992; Colbeck and Harrison, 1985;
Greenberg and Zimmerman, 1984; Rasmussen and
Khalil, 1988; Sexton and Westberg, 1984). Other stud-
ies have reported the seasonal variations of hydrocar-
bons in continental air (Boudries et al., 1994; Jobson
et al., 1994; Hov et al., 1991; Rudolph et al., 1989; Tille
et al., 1985).
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In this study we (1) compare C,—C,, hydrocarbons
measured at four rural sites during the maximum
photochemical activity period, (2) analyze the
contribution of rural hydrocarbons using propylene-
equivalent concentrations, especially in relation to
isoprene, and (3) examine the relationship between
ozone and reactive nitrogen (NO,), and between
ozone and meteorological variables such as temper-
ature, relative humidity, solar radiation, and ozone.

2. EXPERIMENT

2.1. Site description

The hydrocarbon, trace gas and meteorological data were
obtained from four rural SOS-SCION sites (Southern
Oxidants Study-Southeastern Consortium: Intermediate
Oxidant Network) located within the Southeast United
States. The SOS-SCION network provide long-term spatial
scale input for NMHC’s for photochemical model calcu-
lations. The location of the sites used for this paper include
Centreville, AL; Oak Grove, MS; Yorkville, GA and Candor,
NC. All these sites are classified as rural under the National
Dry Deposition Network (NDDN) site classification scheme.
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Requirements include no large point sources of SO, or NO,
within 20-40km, no major industrial complex within
10-20 km, no city of population > 50,000 within 60 km, and
a number of other requirements listed elsewhere (Porter,
1988; Clarke et al, 1991). Figure 1 illustrates the location of
the sites.

The Centreville site is located in Bibb County, AL
(32°90'N, 87°23'W), in a rural area representative of the
transitional nature of the region between the lower coastal
plain and Appalachian highlands, at an elevation of 136 m
mean sea level (msl). Sources of anthropogenic emissions
located within a 110 km radius of the sampling site include the
cities of Montgomery, Birmingham, and Tuscaloosa. This site
is located in a large field approximately 180 m from a NOAA
(National Oceanic and Atmospheric Administration)
weather radar station.

The Oak Grove site (30°99'N, 88°93'W) is located in the
Desoto National Forest in Perry County, MS at an elevation
85 m msl. This site is located in a rural area representative of
the lower coastal plain. It is moderately forested with a cano-
py at approximately 12 m, and predominantly consists of
conifers. The forested areas are interspersed with cultivated
farm land. The site is located in a large field approximately
46 m from the nearest row of brush and 152 m from the
intersection of two dirt roads. The area immediately sur-
rounding the site is mowed on a regular basis and is sur-
rounded by cultivated farm land. The nearest residence
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Fig. 1. Map of the sampling sites.
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visible from the site is located approximately a quarter of
a mile away. It is situated off state route 29 and approxi-
mately 40 km southeast of Hattiesburg, MS.

The Yorkville site (33°55'41”N, 85°02'46"W) is located in
Pauldin County, GA, at an elevation approximately 400 m
above sea level. The site is situated in a rural area representa-
tive of the southern highlands, consisting of hardwood for-
ests interspersed with open pasture and tilled farmland. The
site is off route 278 and is approximately 72 km west of
Atlanta, and 48 km west of a power generating station.

The Candor site (35.26°N, 79.84°W, 197 m msl elevation)
is located in the Central Piedmont region of North Carolina
on the eastern border of the Uwharrie National Forest. The
sampling site is located in an open field approximately
1200 m?, and the field is surrounded by forests mixed with
deciduous and coniferous trees. Sources of anthropogenic
pollution located within a 120 km radius of the sampling site
include the urban areas of Raleigh-Durham, Greensboro,
Winston—-Salem, and the junction between 1-40 and 1-85,
which are all situated to the north and northeast of the site.

2.2. Data collection and analysis

All data used in this paper was obtained from the SOS
data base (SOS, 1994; Schere, 1997). The data results have
been validated and are available in electronic format. The
hydrocarbon data were sampled from September 1992
through October 1993, and include data sampled during
June 1992 at the Candor site. The Centreville and Candor
sites each include 49 total observations; Qak Grove and
Yorkville include 61 and 55 observations, respectively. The
sampling days used for the seasonal averages at each site are
listed at the end of Tables la—d. Time integrated air samples
were collected in 6 # SUMMA electropolished stainless steel
canisters from 1200 to 1300 local time, once every six days.
This sampling frequency was chosen so that each day of the
week would be represented in the study. The hydrocarbon
samples were collected in evacuated canisters. C,—C,, hy-
drocarbons were analyzed at the University of Miami using
a Hewlett Packard HP 5890 II gas chromatograph equipped
with fused silica capillary column, a cryogenic cooling op-
tion, and flame ionization detection. Data reduction was
accomplished using HP 3365 Chemstation II software on
PC-DOS based personal computers. The automatic air con-
centrator used was a modified Entech 2000 (Entech Laborat-
ory Automation, Simi Valley, CA). The detection limit was
0.1 ppbC (parts per billion carbon) with a reproducibility of
30%. A detailed description of the GC analysis is published
elsewhere (Farmer et al., 1994). Additional information con-
cerning the sample collection procedures, quality assurance
efforts, and other important components of the measurement
protocols are reported in SOS Quality Assurance documents
(Momberger, 1994).

Other pollutant measurements included NO, NO,, SO,,
CO, and Oj; as well as meteorological parameters such as
temperature, relative humidity, solar radiation, barometric
pressure, and wind speed and direction made every day
at 15 min intervals throughout the year. NO and NO, were
measured with the TECO 42 S (Thermo Environmental
Instruments Inc, Whatham, MA) high sensitivity chemi-
luminescent analyzer. For the Centreville, Oak Grove
and Yorkville sites, air samples for the continuous gas
monitoring equipment, excluding the non-methane hydro-
carbons, were collected through 0.625 cm o.d. Teflon tubing,
each instrument equipped with a dedicated Teflon line and
particulate filter located at the intake. The NO, converter for
the TECO 42 S was located within the intake dome and
operated at 350°C. Cylinders containing gas standards for
NO, NO,, SO, and CO were present along with a TECO 146
dynamic gas calibrator to provide for calibration and zero
and span checks. The site was equipped with a zero air
generating system. Zero air for the O3, NO/NO, and SO,
monitors was generated by passing ambient air through
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a series of canisters containing Purafill, activated charcoal
and brominated charcoal. Zero air for the CO monitor was
generated by passing ambient air through a palladium con-
verter. The trace gas (except ozone) and meteorological data
used for this work was an average of the 1200-1300 data
from the corresponding hydrocarbon sampling days. The
daily maximum value was used for ozone, which generally
occurred mid-afternoon (~ 1500) at all the sites. More details
about the continuous monitoring program at these sites are
available elsewhere (Fehsenfeld et al., 1994; SOS Report.
1994; Aneja et al., 1996).

3. RESULTS AND DISCUSSION

3.1. Measurements of C,—C, speciated hydrocarbons

The gas chromatographic results were rigorously
evaluated for accurate peak area integration and cor-
rect peak identification (Bernardo-Bricker et al,
1995). The GC peak identifications were determined
by retention time location since the FID detector was
used to quantify peak areas. The University of Miami
group utilized GC/MS analysis on some samples
analyzed in the SOS programs to verify peak identi-
fication. Peak co-elution are always possible in such
a complex matrix as ambient air. Examples of some
peak co-elution in these data are reported elsewhere
(Bernardo-Bricker et al., 1996). Limonene was not one
of those peak co-clution compounds mentioned in
this paper. It is likely not all peak co-elution have
been identified. Oxygenated VOCs were not reported
even though measurable concentrations are expected
in the ambient air at the sites sampled. In some
instances these oxygenated VOCs elute near some of
the 56 target VOCs reported. The presence of these
compounds could have an impact on the conclusions
presented in the following discussion. The speciated
hydrocarbon data used in this paper were obtained
from the validated SOS data base, and was scrutinized
more than most speciated hydrocarbon data prior to
public release.

Tables 1a—d summarize the seasonal average, me-
dian, standard deviation and range of the fifty-six
target C,—C,, compounds sampled at each site. The
combined total sum of these fifty-six target VOC
compounds is defined as total non-methane hydro-
carbons (TNMHC:s). Isobutene and l-butene are re-
ported together because of problems with coelution,
as well as m-xylene and p-xylene. For the most part,
the autumn through summer seasons represent the
data in chronological order: autumn is associated
with September through November 1992, winter in-
cludes December 1992 through February 1993, spring
includes March through May 1993, and summer in-
cludes June through August 1993. However, the
autumn category also includes sampling days from
September and October 1993, and the summer cat-
egory includes three days from June 1992 at the
Candor site. The actual sampling days used for the
seasonal averages are listed at the end of Tables l1a-d.

During the summer, the 10 most abundant com-
pounds were highly variable among the sites. Isoprene
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Non-methane hydrocarbons
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Non-methane hydrocarbons
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Non-methane hydrocarbons
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was the dominant hydrocarbon at all but the Oak
Grove site, where n-pentane was the most abundant
hydrocarbon (16.51 &+ 20.97 ppbC, median = 7.68
ppbC) with isoprene immediately following with
a concentration of 11 &+ 4.2 ppbC. Isoprene, propane,
isopentane, 2-methylpentane, and styrene consistently
appeared in the top 10 most abundant hydrocarbons
at all four sites, though not necessarily in that order.

L. M. HAGERMAN et al.

During the wintertime, the same top four dominant
compounds, i.e., in the following order: propane, n-
butane, ethane, and isopentane were observed at three
sites. The Yorkville site had isopentane and ethane
switched around in ranking. At all sites acetylene,
n-pentane, ethene, isobutane, and benzene were with-
in the top 10 most abundant species. Toluene was also
within the top 10 at all sites except at Oak Grove,

Ethane

OCentreville
Q0ak Grove

8 Yorkville
@Candor

OCentreville

80ak Grove
W|Yorkvilie

raCandor

7

Autumn Winter Spring Summer

3 Ethene

OCentrevilie
25 B0Oak Grove

@ Yorkville
@Candor

2

Autumn Winter Spring

Fig. 2. Seasonal averages of select C,~C; hydrocarbons.
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where it ranked 11th. The individual C,—C5 alkanes
(except cyclopentane) dominated the list of most
abundant compounds for all four sites during the
winter.

Figure 2 displays the distinct seasonal variation of
ethane, propane, n-butane, isobutane, ethene and
acetylene with maxima occurring during the winter.
These observed seasonal variations of the paraffins
and acetylene are consistent with the literature. Job-
son et al. (1994) reported that, alkane compounds and
acetylene concentrations displayed a winter max-
imum and summer minimum at a remote boreal site
in Canada. Penkett et al. (1993) observed similar sea-
sonal trends in hydrocarbon concentrations in ambi-
ent air measured over the North Atlantic Ocean.
Seasonal variations of atmospheric hydrocarbons
were also measured in western France (Boudries et al.,
1994) and at a rural site in Norway (Hov et al., 1991).
The winter maximum and summer minimum of the
lower alkanes and acetylene has been attributed to
hydroxyl chemistry and the seasonal abundance of
the OH radical (Jobson et al., 1994; Penkett et al.,
1993; Boudries et al., 1994; Lightman et al., 1990;
Spivakovsky et al., 1990). Seasonal variation in hydro-
carbon source strengths, and differences in atmo-
spheric behavior such as increased convection and
vertical mixing in the summer, and differences in air
mass climatology with season, also play a role in the
hydrocarbon seasonal variation (Jobson et al., 1994).

TNMHCs did not vary greatly between the au-
tumn, winter, and spring, ranging from approximately
30 to 50 ppbC for these three seasons (Fig. 3). How-

Total Non-Methane Hydrocarbons

AT

Summer

OCentrevitle
EOek Grove
W Yorkviie
ACandor
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ever, the summer period shows much higher concen-
trations, accounted for primarily by increased concen-
trations of the biogenic hydrocarbons.

The paraffin sum displays a seasonal pattern with
a winter maximum for all but the Oak Grove site,
which displays its maximum during the summer. Pe-
culiarity of the Oak Grove site can be attributed to
n-pentane concentration (16.51 + 20.97 ppbC, me-
dian = 7.68 ppbC), which is 8-10 times greater than
that measured at the other three sites. Comparison of
the mean and median n-pentane concentration indi-
cates that the measurements are not well distributed.
Out of 12 observations, two days had values of
~57 ppbC, one day measured 29 ppbC and two days
measured approximately 15 ppbC. The reason for
these high n-pentane values are uncertain; however,
auto emissions is ruled out as a possible source because
of the expectation of equally high values for many of
the target hydrocarbons that were not observed.

The olefins sum, which excludes the biogenic
hydrocarbons isoprene, o-pinene, f-pinene and
limonene, shows little variation throughout the year.
With the exception of the summer mean of 10.7 ppbC
measured at Yorkville, the mean concentration ranges
from 4 to 7 ppbC for all seasonal periods. Other
studies have shown no distinct seasonal trend for
olefins at continental remote sites unaffected by an-
thropogenic sources (Jobson et al., 1994), and very
little seasonal variation in the free troposphere over
the Atlantic (Penkett et al., 1993). Hov et al. (1991)
found a seasonal trend for ethene and propene
with a late January maxima and a secondary maxima

Olefins

OCentevile |
A0ek Grove
W Yorkvilie

Fig. 3. Seasonal averages of hydrocarbon sums (olefins do not include isoprene, a-, f-pinene, and
limonene).
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during July—August, but attributed this summer maxi-
ma to point sources from areas upwind of the site.
Yorkville is affected by two potential emission sources
including the city of Atlanta, located approximately
45 miles (72 km) southeast of the site, and a large
power generating station located approximately 30
miles (48 km) east of Yorkville (D. Kirk, pers. com-
mun., 1996). Composition of the olefins compounds at
Yorkville during this period appears to be similar to
the other three seasonal periods. The summer maxima
for the olefins at Yorkville may be due to transport
from these anthropogenic emission sources.

With the exception of Centreville, there appears to
be seasonal difference for the sum of aromatics at the
rural sites. Largest aromatic concentrations occur
during the summer period. Highest sum of aromatic
concentrations occurs at the Candor site except dur-
ing the winter period. The difference between the high
aromatic concentration during autumn at Candor
(19.75 ppbC) and the other three sites (~ 5-8 ppbC) is
accounted for by benzene 12.77 £ 8.35 ppbC). The
difference between the high summer aromatic sum at
Candor and the Yorkville site is due primarily to
1,2, 4-trimethylbenzene (6.79 + 4.66 ppbC), along with
the compounds styrene (2.75 + 1.28 ppbC) and tol-
uene (2.94 + 1.97 ppbC). The reason for the high
levels of these particular compounds is unclear.

L. M. HAGERMAN et al.

Surface wind direction appears to have a random
relationship with excessively high concentrations of n-
pentane, benzene, and 1,2 4-trimethylbenzene.

Table 2 summarizes selected hydrocarbons mea-
sured during the summer at various rural and remote
sites. It can be seen that hydrocarbon concentrations
at the Centreville site are comparable to the other
sites designated as rural in Table 2. The Fraserdale
site in Canada appears to be the least affected by
anthropogenic sources, given its lower concentrations
of acetylene and the other lower molecular weight
hydrocarbons.

3.2. Biogenic hydrocarbons

Isoprene averaged approximately 2 ppbC during
the autumn and spring, and was virtually non-existent
during the winter period for all four sites (mean
<0.1 ppbC) (Fig. 4a). Isoprene concentrations were
highest during the summer, with Centreville having
concentrations twice as high as the other three sites.
These observations are consistent with other reports
of seasonal dependence on isoprene levels (Rasmussen
and Khalil, 1988). Isoprene emissions are directly re-
lated to plant growth period and sunlight intensity. As
shown later, the magnitude of emissions is directly
related to ambient temperature. The terpenes, which
include the naturally emitted compounds a-pinene,

Table 2. Average hydrocarbon concentrations (ppbC) at various rural sites during the summer
months

Fraserdale Birkenes

Belfast

NW¢?  Centreville Raleigh

Compound Canada® Norway® Maine® England Alabama® NC'  Brazil®
Ethene 1.67 20 1.6 0.61 378
Acetylene 0.15 0.51 <0.5 0.6 0.36

Ethane 1.64 3.05 3.5 149 1.74 4.18
Propene 0.82 0.5 4.1 0.73 0.54 0.93
Propane 0.23 2.01 20 10.3 2.60 9.59 1.35
Isobutane 0.028 0.70 0.5 0.8 0.77 0.61

n-Butane 0.06 1.67 20 1.1 1.48 2.04 0.96
Isopentane 0.04 1.00 1.0 222 4.42

n-Pentane 0.065 0.62 1.0 s 1.04 197 <DL
2-Methylpentane <0.5 3.34 1.28
3-Methylpentane <0.5 0.82 0.70

n-Hexane 5.1 0.68 0.87 <DL
cis-3-Hexene <0.5 0.70

Benzene 0.61 1.32 3
Toluene 1.20 8.96 0.84
Reference Sampling Period

#Jobson et al. (1994)

July to September 1990, 1991 and 1992, collected midmorning

(0900 to 1200). Samples from June to July 1990 were collected

®Hov et al. (1991)

°Sexton and Westberg (1984)

4Colbeck and Harrison (1985)

¢This study

T Lawrimore et al. (1995)
(semi-urban)

£ Greenberg and Zimmerman
(1984)

throughout the day

June-August 1987
June-July 1975
May-July 1983

June-August 1993, 1200-1300 local time
Surface, August 1993, 0500-0800 EDT

Surface, August and September 1979 and 1980

" Geometric mean.
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Isoprene
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Fig. 4a. Seasonal average of isoprene.
Terpenes
7
6
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OCentreville
BOak Grove
BYorkville
@Candor
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Fig. 4b. Seasonal average of terpene sum (a-, 8-pinene, limonene).

B-pinene and limonene, show a seasonal distribution
with lowest concentrations in the winter and highest
in the summer (Fig. 4b). However, unlike isoprene,
variation of terpenes concentration levels are less dra-
matic; and these compounds are observed throughout
the winter, with the sum ranging between 1.25 and
1.9 ppbC for all sites. A study done by Tingey (1981)
on live oak found that isoprene was emitted only in
daylight, and given constant light conditions, the
emission rate is temperature dependent. Terpene

emissions from slash pine do not vary with light, but
emission rates are log-linearly related to temperature
(Tingey, 1981). While isoprene is highly dependent on
temperature and virtually negligible during the win-
ter, the terpenes have a small winter abundance. Like-
wise, terpene emissions in general come from plants
that have seasonal growth patterns but do not lose
their foliage like deciduous plants. Table 3 lists iso-
prene and monoterpene data from this work and
other literature.
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Table 3. Summer averages of biogenic hydrocarbons (ppbC)
Location Isoprene o-Pinene B-Pinene Limonene
Raleigh, NC* 2.08
Brazil® 12 2.7
Niwot Ridge, CO*® 3.15 14 0.7
Candor, North Carolina® 10.01 2.25 1.30 0.69
Centreville, Alabama® 21.15 1.60 1.36 0.24
Oak Grove, Mississippi® i1.19 2.71 3.04 0.63
Yorkville, Georgia® 9.8 0.71 2.06 0.46
a Lawrimore et al. (1995) (surface, August 1993, 0500-0800 EDT).
b Greenberg and Zimmerman (1984) (surface, August and September 1979 and
1980).
¢Greenberg and Zimmerman (1984) (surface, August-September and November
1982).
9 This work (June 1992 and 1993, 12001300 local time).
¢ This work (June-August 1993 1200-1300 local time).
100
®
x @
.‘ °
o«
R-square = 0.53 Ao o
101 log(isoprene) = -0.67944 + S X
- 0.056202T ?’8
g [ )
g ® o
g ® °
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o Centreville
o Oak Grove
A Yorkville
X Candor
0.1 + t t t ——
5 10 15 20 25 30 35

Temperature (C)

Fig. 5. Isoprene concentration vs temperature for the months April through September (1992 and 1993).

To demonstrate temperature dependence, Fig. 5
shows the linear relationship between the logarithm of
isoprene concentration (ppbC) and temperature (°C)
using data collected from all four sites. The temper-
ature and isoprene concentrations were measured and
integrated during the same time interval of 1200 to
1300 local time. The plot includes all values for which
isoprene was greater or equal to 1ppbC (April
through September). The regression equation deter-
mined is given in equation (1)

log(isoprene) = —~0.67944 + 0.056202T (1)

with an R-squared value of 0.53. The units of isoprene
are in ppbC. The slope of the best fit line (0.056)

is lower than the 0.071 value reported by Jobson et al.
(1994). The regression equation reported by Jobson in
units of ppbv is shown in equation (2)

log(isoprene) = —1.40 + 0.071T (in units of ppbv),

@
log(isoprene) = —0.70103 + 0.071T (converted

to units of ppbC). (2a)

Converting this equation for units of ppbC changes
only the intercept to a value of —0.70103 and the
slope remains the same (equation (2a)). Considering
a temperature range of 18-35°C, the predicted isoprene
concentrations using Jobson’s regression equation was
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two to three times greater than the predicted concen-
trations using the regression equation found in this
work. Part of this discrepancy may be due to the fact
that in this work, four sites were used for the equation
(1) regression, versus Jobson’s one site, which in-
creases the variability of isoprene concentrations.
Vegetation composition and site location with respect
to the vegetation is expected to have an impact on
observed isoprene concentration. To account for this
difference, a regression of isoprene at only one site,
Centreville, resulted in a higher R-squared value (0.61)
and a slope very similar to Jobson (0.066), but with
a lower intercept. The regression equation for Cen-
treville is given in equation (3).

log(isoprene) = —0.9029 + 0.066T. (3)

Equations (2a) and (3) appear to be in better
agreement.

Another reason which may explain the difference in
regression equation terms is that the relationship be-
tween isoprene and temperature is affected not only
by the type of surrounding vegetation, but also the
atmospheric concentration of OH and ozone as well.
Other factors which can influence measured isoprene
concentrations include the time of day when samples
were collected, and atmospheric conditions, such as the
height of the boundary layer or vertical mixing and
turbulence in the atmosphere. The most important
observation of Fig. § is the observed strong dependence
of isoprene concentration with ambient temperature.

3.3, Effect of hydrocarbon reactivity with hydroxyl
radical

Characterizing composition and abundance of hy-
drocarbons at a site provides information concerning
source contribution. However, individual compound
reactivities with OH and O, affect the observed con-
centration. Consequently using source-receptor ap-
proaches to relate observed composition to emission
is complicated by the oxidation reactions. Olefin com-
pounds are particularly unusable.

The contribution of the hydrocarbon compounds
to the production of photochemical ozone is related
to their reaction with hydroxyl radicals and ozone in
the complex photooxidation mechanism. For most
hydrocarbons, the OH radical is the most important
reaction pathway. Several reactivity approaches have
been proposed to estimate the contribution of the
individual compounds contribution to the production
of photochemical ozone. To estimate for the reactivity
of the hydrocarbon compounds, we have adopted the
method used by Chameides et al. (1992), and Lawri-
more et al. 1995, by calculating the propylene-equiva-
lent concentration:

kon(j)

Propy-Equiv( j) = Conc( j)m.
ou(C3He

Propy-Equiv(j) is a measure of the concentration of
species j on an OH-reactivity based scale, normalized
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to the reactivity of propylene, Conc( ;) is the concen-
tration of species j in ppbC, koy( j) is the rate constant
for the reaction between species j and OH, and
kou(CsHg) is the rate constant for the reaction be-
tween OH and propylene (Chameides et al., 1992).
The propylene-equivalent concentration is literally
the concentration, in ppbC, required of propylene to
yield a carbon oxidation rate equal to that of the
species j. For example, if a species j had a concentra-
tion of 5 ppbC and was twice as reactive as propylene,
it would have a propylene-equivalent concentration
of 10 ppbC. This method is useful since it ranks the
reaction rate of a species as well as its atmospheric
concentration. Table 4 lists the rate constant k multi-
plied by 10'2 for the gas-phase reactions of the OH
radical with hydrocarbons. Units of k are in cm® mol-
ecule ™! s™!. The OH rate constants for some of the
reported hydrocarbon compounds could not be found
in the literature and were therefore omitted from
the propylene-equivalent hydrocarbon sums. These
compounds include 3-methyl-1-pentene, 4-methyl-1-
pentene, cis-3-hexene, 2,3-dimethylpentane, 1,3-di-
ethylbenzene and n-butylbenzene. Because these com-
pounds were left out, the propylene-equivalent
concentrations of the sums are somewhat under-
estimated, though not by much since the sum of these
six compounds range between ~3 and 4.5 ppbC at
the four sites during the summer and between ~ 1.5
and 2 ppbC during the winter.

Figure 6a and b shows selected hydrocarbon sums
in propylene-equivalent concentrations. The hydro-
carbon sums were calculated by first individually
calculating the propylene-equivalent concentration
for each hydrocarbon, then summing the compounds
into their appropriate categories. Figure 6a shows
that, by taking reactivity into account, the summer
contribution of the biogenics at Candor is at least
65% of the total sum of hydrocarbons given as
propy-equivalent concentrations. The biogenics in-
clude isoprene, a-pinene, f-pinene, and limonene. The
biogenic contribution was highest at the Centreville
site, contributing 90% to the total sum. The biogenics
at the Oak Grove and Yorkville sites represented 78%
and 69% of the total, respectively. Isoprene was
clearly the dominant compound during the summer,
having a propylene-equivalent concentration ranging
from 81.22 ppbC at the Centreville site, to 37.63 ppbC
at the Yorkville site. Also from Fig. 6a, the propylene-
equivalent concentrations for the paraffins, ole-
fins and aromatics are much lower than the biogenic
compounds. For example, the propylene-equivalent
alkane sums range from 2 to 5.5 ppbC among the sites.

In contrast to the summer propylene-equivalent
concentrations, the total propylene-equivalent non-
methane hydrocarbon sum was four to seven times
lower for the winter season, ranging from 15 to
21 ppbC, as shown in Fig. 6b. Despite virtually negli-
gible isoprene emissions during the winter season, the
biogenics still dominate in the winter due to the emis-
sions of terpenes throughout the year. When taking
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Table 4. Rate constants k (cm® molecule ™ !s™!) for the reactions of OH
radicals with hydrocarbons at T = 298 K (from Atkinson, 1990, except where

noted)
Compound 1012 x k Compound 102 x k
Ethene 8.52 2,4-Dimethylpentane 5.1
Acetylene 0.9 1,1,1-Trichloroethane® 0.0119
Ethane 0.268 Benzene 1.23
Propene 26.3 Cyclohexane 7.49
Propane 1.15 2,3-Dimethylpentane
Isobutane® 25 Trichloroethylene® 2.36
Isobutene? 51 Methylcyclohexane 104
1-Butene? 314 2,3,4-Trimethylpentane 7
n-Butane 2.54 Toluene 5.96
trans-2-Butene 64 n-Octane 8.68
cis-2-Butene 56.4 Perchloroethylene® 2.16
3-Methyl-1-butene 31.8 Ethylbenzene 7.4
Isopentane® 31 p-Xylene 143
1-Pentene 314 m-Xylene 23.6
2-Methyl-1-butene 61 Styrene® 571
n-Pentane 394 o0-Xylene 13.7
Isoprene 101 Isopropylbenzene 6.5
trans-2-Pentene 67 a-Pinene 537
cis-2-Pentene 65 n-Propylbenzene 6
2-Methyl-2-butene 68.9 1-Ethyl-3-methylbenzene® 22.4
3-Methyl-1-pentene 1-Ethyl-4-methylbenzene® 13.6
4-Methyl-1-pentene 1,3,5-Trimethylbenzene  57.5
Cyclopentane 5.16  1-Ethyl-2-methylbenzene® 13.2
2-Methylpentane 5.6 B-Pinene 78.9
3-Methylpentane 5.7 1,2,4-Trimethylbenzene®  37.23
n-Hexane 5.61 Limonene 170
cis-3-Hexene 1,3-Diethylbenzene
Methylcyclopentane® 6.596 n-Butylbenzene

*Warneck (1988).
®Middleton and Stockwell (1990).

¢NIST Chemical Kinetics Database, Version 5.0 (Westley et al., 1993).

reactivity into account, limonene was the dominant
terpene compound at all sites, ranging from ~3 to
~4 ppbC. This is in sharp contrast to the regular
concentrations, in which the alkanes dominate. While
the paraffins range from 28 to 35 ppbC during the
winter, their calculated propylene-equivalent concen-
trations are approximately 3 ppbC. It must be pointed
out that the propylene-equivalent approach, or any
other OH reactivity concept, prioritizes the individual
compounds in terms of its reaction with OH radicals.
However, the production of RO, radicals and the
availability of NO, are essential for the production of
photochemical ozone. Also, ozone present at these
rural sites will compete with OH for the reaction with
the olefinic compounds, complicating the reaction
mechanism of ozone production. Although the rate
coefficients for reactions between olefins and ozone
are much smaller than those between olefins and the
OH radical, the reactions become competitive with
OH when the concentration of ozone builds up (War-
neck, 1988).

Figure 7 shows the trace gases (O3, CO, SO,, NO,)
measured at the sites during the hydrocarbon samp-
ling period (every 6 d, 1200 to 1300). The only trace
gas measured at Candor was ozone. From Fig. 7 we
see that the Yorkville site has the highest summer

average of ozone of all the sites (93 + 22 ppb). It also
has the highest CO, SO,, NO, and NO, among the
three sites for which measurements were taken. This
indicates that Yorkville, while perhaps located in a ru-
ral site, is subject to strong influence of anthropogenic
emissions. Yorkville is located approximately 45 miles
(72 km) west of Atlanta, Georgia, and wind trajecto-
ries suggest that pollutant transport is most likely the
reason for these high values. The average ozone for
Centreville and Oak Grove during the summer re-
mained essentially the same as during the spring and
autumn.

Daily average ozone was plotted against the differ-
ence of daily averaged NO,-NO in Fig. 8. The data
used were for the period from 1 June to 31 August
1993, averaged from 10 am to 4 pm for each day (92
observations). Ideally, one would plot the difference
NO, -NO,, where NO, = NO + NO,, because this
is a direct measure of the products of the NO, oxida-
tion and minimizes the variability due to differences in
photochemical aging of the sampled air mass (Trainer
et al., 1993). Unfortunately, NO, was not measured
and therefore NO, could not be determined. There-
fore, the age of the air mass was not taken into
account. A correlation can be seen between ozone and
NO,~NO at each site. Observed ozone at Yorkville is
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Propy-Equivalent Concentrations: Summer
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Fig. 6a. Hydrocarbon sums calculated in propylene-equivalent concentrations for the summer season.
Biogenics include isoprene, a-pinene, f-pinene, and limonene.

Propy-Equivalent Concentrations: Winter
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Fig. 6b. Hydrocarbon sums calculated in propylene-equivalent concentrations for the winter season.
Biogenics include isoprene, a-pinene, §-pinene, and limonene.

higher than that observed at Centreville for a given
NO,-NO value. This may be explained by the fact
that Yorkville is 45 miles west of a large anthropo-
genic area source (Atlanta, Georgia), and 30 miles
west of a large power generating station, and is affec-
ted.by air containing relatively unaged NO,, which, in
the presence of biogenic hydrocarbons, can result in
the production of ozone. In contrast Oak Grove is
a particularly clean site, with daily average ozone
values not exceeding ~70 ppb and NO,~NO not

exceeding ~ S ppb, so the regression line for Oak
Grove is much steeper and has a lower intercept. This
relationship implies that ozone production is more
efficient at lower precursor concentration. On the
other hand, it is impossible to discriminate between
ozone transported and ozone produced to validate
such a conclusion. Earlier in this work it was shown
that during the summer, the Yorkville site had lower
concentrations of isoprene (Fig. 4a) and non-methane
hydrocarbons calculated in propylene-equivalent
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Fig. 7. Seasonal averages of trace gases measured during the hydrocarbon sampling period. Ozone
represents the seasonal average of daily maximum ozone.
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Fig. 8. Ozone vs NO,-NO. Data used were daily averages from 1000 to 1600, 1 June through 31 August 1993.

concentrations (Fig. 6a) than at Centreville or Oak
Grove, yet Yorkville had the highest concentrations
of ozone. Ozone production in rural areas is typi-
cally limited by the availability of NO, rather than
hydrocarbons, since isoprene and other biogenic
VOCs provide a ubiquitous source of hydrocarbon
precursors for ozone production particularly during

the summer ozone period. The high ozone concentra-
tions at Yorkville reinforces this NO, limited charac-
teristic, showing that greater concentrations of
reactive nitrogen (NO,) at Yorkville play a more sig-
nificant role in ozone formation than greater concen-
trations of highly reactive biogenic hydrocarbons
(Centreville).



Non-methane hydrocarbons

4. SUMMARY

An analysis of hydrocarbons sampled from 1992
through 1993 at four rural sites in the Southeast U.S.
shows a seasonal variation of light molecular weight
(C,~C,) alkanes, ethene and acetylene, with a max-
imum during the winter and minimum during the
summer. The biogenic hydrocarbons (isoprene and
the terpenes) also display a seasonal variation, with
a summer maximum and winter minimum. Isoprene
was virtually non-existent during the winter at all
sites, and averaged from 9.8 ppbC (Yorkville, GA) to
21.15 ppbC (Centreville, AL) during the summer. The
terpene concentration was greatest in the summer
with averages ranging 3.19 ppbC (Centreville, AL) to
6.38 ppbC (Oak Grove, MS), but was also emitted
during the winter months, with a range of 1.25 to
1.9 ppbC for all sites. The seasonal variability of the
biogenic hydrocarbons agrees with previous literature
reports. When considering the reactivity of hydrocar-
bons with the OH radical, the biogenics dominate the
total non-methane hydrocarbon sum, representing
between 65% and 90% of TNMHCs during the
summer season, while the impact of the other hydro-
carbons are less important. The propylene-equivalent
TNMHC sums during the summer at the four sites
range between 70 and 100 ppbC with isoprene being
the dominant hydrocarbon; this propylene-equivalent
range drops during the winter season with a range of
15-20 ppbC, when isoprene emissions are negligible.

Seasonal averages of the trace gases show that York-
ville was the most affected by anthropogenic emissions,
while Oak Grove was the cleanest of the sites. Despite
the fact that Yorkville had the lowest concentration of
summer propylene-equivalent total NMHCs, it had the
highest values of ozone, SO,, NO, and CO than the
other two rural sites for which measurements were
taken. A plot of ozone versus NO,~NO shows that
with a given concentration of NO,-NO, the Yorkville
site had higher ozone concentrations than either the
Centreville or Oak Grove sites. These observations
reinforce the NO, limited characteristic of this region,
namely, that because hydrocarbons are ubiquitous in
this region due to natural hydrocarbon emissions, the
ozone producing potential is limited to the availability
of NO,, in this region, greater levels of NO, play
a more significant role in ozone formation than greater
concentrations of reactive biogenic hydrocarbons.
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