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Abstract—Results from the collection and chemical analysis of cloudwater samples collected from May to
October 1986-1988 from the five high-elevation ( 2950m MSL) Mountain Cloud Chemistry Program
(MCCP) sites (Whiteface Mountain, NY, Mt Moosilauke, NH, Shenandoah Park, VA, Whitetop Mountain,
VA, Mt Mitchell, NC) in the eastern United States are summarized The resulting database documents the
regional chemical chimatology of high-elevation forest ecosystems in the eastern U S Clouds occurred at
these sites on 32-77% of the days during the sample collection period More than 90% of cloud samples
were acidic (pH < 5 0) The lowest cloudwater pH (2 29 integrated 1-h collection period) was recorded at Mt
Mutchell, NC At all sites sulfate and nitrate were the dominant anions and hydrogen and ammonium were
the dominant cations in cloudwater samples Mount Mitchell received the most acidic clouds and highest
chemical exposures, while the Whiteface summut site recerved the least acidic and lowest chemical exposures
compared to other MCCP high-elevation sites Cloud pH and major chemical components exhibited a
seasonal trend with the maxima during the summer months, and correlated well with temperature and
ozone concentrations The mean cquivalent ratios of SO~ to NO 3 were found to be 1 9-3 9 at these sites It
1s noted that SO~ correlated highly with hydrogen ion, suggesting that contribution to cloud acidity by
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sulfate and/or 1ts precursors may be significant

Key word index Cloud chemistry, regional analysis, ozone, chemical exposure

1 INTRODUCTION

High-elevation forests m the eastern United States
have shown signs of injury and decline during the past
two decades In recent years, there has been increasing
concern with the possible impact of atmospheric acid-
1ty on forested ecosystems (Klein and Perkins, 1988,
Cowling, 1989, Bruck et al 1989, Jacobson et al,
1990b, Hertel et al , 1990) It 1s now believed that acidic
cloud depositton may contribute to observed forest
decline at high-elevation locations where mountain
slopes are frequently immersed 1n clouds (Jacobson et
al, 1990a, Saxena and Lin, 1990, Aneja et al, 1990a,
1992, Cowling et al, 1991)

Acidic clouds and fogs have been characterized over
several decades in the U S and Europe, both mn urban
and rural areas Table 1 shows examples of cloud
acidity measurements at some of those locations The
cloud pH values reported by these investigators
ranged from 22 to 76 Most authors focused on
individual case studies, except for Weathers et al
(1986), who studied a widespread acid cloud event at
stx non-urban sites 1n the eastern U S However, their
study was based on one single event and hmited to
moderate elevation No research has been done for
high-elevation regional cloud chemustry climato-
logical analysis from north to south in the eastern U S
to compare the acidity exposures between different
sites Possible forest decline in high-elevation ecosys-

tems across the eastern US necessttated docu-
mentation of the chemical exposure and distribution
of clouds at high elevation on a regional scale

Beginning in 1986, a senes of measurements, includ-
ing major cations and anions in cloud water and
precipitation, gas-phase measurements of ozone,
sulfur dioxide and nitrogen oxides, and meteorologi-
cal parameters (Aneja et al, 1992) were made at six
remote sites in the eastern US These measurements
were made as part of the Mountain Cloud Chemistry
Project (MCCP) sponsored by the US Environ-
mental Protectton Agency Five high-elevation (2
950 m MSL) sites were selected from 35 to 45°N to be
representatives of the geographic and meteorological
variability 1n this large region One low-elevation site
(Howland, ME, 65 m MSL) was mstrumented to allow
evaluation of the impact of elevational gradient In
these ecosystems, red spruce ( Picea rubens Sarg ) and
Fraser fir (Abies fraseri [Pursh ] Poir) are the domi-
nant tree species, they have shown signs of decline
above the cloud base, which 1s frequently observed
around 800--1200 m (Mohnen et al, 1990a)

The objectives of this research are to (1) characterize
the exposure of montane forested ecosystems to chem-
icals 1n cloud water at high elevations 1n the eastern
US, (u) determine north-south gradients of cloud
chemistry based on observations made at five high-
elevation MCCP sites, (1) study the regional chemical
climatology at high elevations in the eastern U S
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High-elevation cloud chemustry

2 MCCP SITE DESCRIPTION AND MEASUREMENT
METHODS

The Mountain Cloud Chemistry Program (MCCP) con-
sists of five high-elevation sampling sites in the eastern U S
Whiteface Mountain, NY, Mt Moosilauke, NH, Shenandoah
Park, VA, Whitetop Mountain, VA, Mt Mitchell, NC, and
one low-elevation sampling site, Howland, ME Figure 1
Ulustrates the location of the MCCP sites

At Whiteface, Whitetop and Mt Mitchell, the main sites
are located on the summt of mountains, while the main sites
at Shenandoah and Moosilauke are along a rnidgeline Sub-
sites, such as those at Whiteface, Shenandoah and Mt
Muitchell are located along the siope of the same mountain

The northernmost high-elevation site in the network is
Whiteface Mountain (WF) (44°23'N, 73°59'W), located 1n the
northeastern Adirondack Mountains in New York, at an
elevation of 1483 m The summit 1s above the tree line,
providing access to regional air flow (sub-site 1) The White-
face Mountain—Lake Placid Turn sampling site (sub-site 2} 1s
located at 1245 m, adjacent to a balsam fir canopy

Mt Moosilauke (MS), NH (43°59'N, 71°48'W), 1s one of the
most southern peaks of the White Mountains It 1s located
about 50 km southwest of Mt Washington (1917 m) and
about 10 km northeast of the United States Forest Service
(USFS) Hubbard Brook Experimental Forest and Water-
shed The forest composition ranges from mixed hardwoods
at lower elevations to spruce-fir (about 10% spruce) at mid-
elevations, and pure balsam fir at high elevations The
meteorological station-MCCP site at Mt Moosilauke 1s at
962 m and 1s partially shielded from the prevailing westerly
winds

The Shenandoah (SH), VA, site (3872'N, 78°20'W) 1s 1n the
Shaver Hollow Watershed, located in the north-central
sector of the Shenandoah National Park The meteorological
tower was erected 1n the watershed at an elevation of 1040 m
The tower location 15 representative of the surrounding
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deciduous forest canopy In addition to this site, two other
sub-sites have been established

The Whitetop Mountain (WT) site (36°38'N, 81°36'W) is
located 1n the Mt Rogers National Recreation Area of the
Jefferson National Forest in southwestern Virgima, 6 km
southwest of Mt Rogers, the highest peak in Virgima The
TVA Whitetop Mountain summit research station (at
1689 m) straddles the main nidgeline of the Appalachian
range, strategically located to intercept air from several
directions In addition to the summut station, other sub-sites
have been established

The southernmost MCCP site 1s located in Mt Mitchell
State Park (MM), NC (35°44'N, 82°16'W) The site 15 at Mt
Gibbs (1950 m MSL)~ 2 § k southwest of Mt Mitchell, which
1s the highest peak in the eastern US (2038 m MSL) The
summit is covered with Fraser fir, and the region from 1500
to 1800 m 1s an ecosystem composed mainly of mixed fir and
spruce

The low elevation site 1s in the Howland Forest (HF), ME
(45°13'N, 68°43'W) It 1s located at 65m elevation near
Howland, ME, 35 miles north of Bangor The forest 1s spruce
with some of balsam fir, hemlock and white pine

Each of the locations had a meteorological walk-up tower
to provide measurements above the forest canopy The
meteorological sensors were mounted on the top of the tower
(Mohnen et al, 1990a) With regard to the cloudwater
collection, which was performed manually at all sites, an
ASRC (Atmospheric Science Research Center, State Umver-
sity of New York at Albany) passive cloud collector (Fal-
coner and Falconer, 1980) was mounted on the top platform
of towers above the surrounding canopy at most sites The
only exceptions to this are Whiteface Mountain, where the
collector was placed on the roof of the summut research lab,
and Whitetop Mountain, where 1t was on a platform buult
over the research trailer The manual cloudwater collection
commenced hourly during the cloud events The cloud event
1s signaled when a stationary object at a distance of 1 km

Whiteface

Q

Fig 1 Map of eastern United States showing the locations of MCCP sites
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from the observation point becomes obscured by cloud and
stays consistently out of view for more than 15 min Once a
cloud event has begun, a 500 m! polyethylene bottle was
attached to the cloud collector with a clean tube Collection
bottles were changed hourly At the end of each event, the
cloud collectors were cleaned by rinsing with delonized water
until the conductivity of the rinse water was within
+10 uScm ! of that of the detomzed water The collectors
were then covered with a plastic bag until the start of the next
event Wash water was discarded

Liquid-water content of each cloud was measured with a
gravimetric sampler (Valente et al, 1989) only at the main
site The accuracy and precision of the instrument are +01
and +005gm™3, respectively, with the time basis of the
sample measurement being 1-h integrated sampling The pH-
meter was calibrated before every measurement, using stand-
ard buffer solutions at pH 400 and 700 The pH and total
volume collected were measured immediately after collec-
tion Thereafter, these samples were refrigerated at ~4°C and
were shipped for pH, conductivity and major-1on chemical
analysis to either the site specific wet chemical laboratory or
to Illinois State Water Survey (ISWS) laboratory The 1onic
chemical composition of the samples was determined using
ton chromatography (IC)

The mamntenance and calibration for these instruments
were performed routinely under the MCCP protocol and
Quality Assurance/Quality Control plan 1n order to ensure
data quality (Mohnen, 1990b) EPA audits at the sites and 1n
chemical laboratories were made during the first month of
each field season The Central Analytical Laboratory (CAL)
at the Illinois State Water Survey also provided the QA/QC
for analytical measurement for the MCCP Sample collec-
tion, analysis, and guality assurance were critical elements of
this program At CAL, both non-precipitating (1e clouds)
and precipitating (1¢ rainfall) samples from the sites were
analysed for pH, conductivity and concentrations of NH;,
Na* K* Ca**, Mg?* SOZ-, NO;j and C1~

3 CHARACTERIZATION OF CLOUD CHEMISTRY

31 Cloud interception frequency at MCCP sites

The frequency of cloud immerston detected at the
five MCCP summiut sttes for 19861988 field seasons 1s
reported 1n Table 2 At the two northern sites, clouds
occurred 37 (WF1) and 19% (MS1) of the time during
the 3-year field seasons The three southern sites
expertenced cloud immersion 11 (SH1), 30 (WT1) and
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29% (MM1) of the time during the same pertod Table
2 suggests that cloud frequency decreased from 1986
to 1988, reflecting a shift from wet weather in 1986 to
drought conditions m 1988 over most of the eastern
US Mount Moositlauke and Shenandoah Park sites
expertenced fewer cloudy pertods due to their lower
elevations In companison to the long-term climate
data, Mohnen et al (1990a) also reported that the
northern MCCP sites experienced above-normal
cloudiness 1 both 1986 and 1987 and below-normal
cloudiness 1n 1988 However, the southern sites had
below-normal cloudiness during all the three field
seasons

Diurnal patterns of cloud frequencies reported by
Mohnen et al (1990a) indicate that a preference for
cloud impaction was during mght and morning hours
(7 pm-10 am) Whiteface Mountain, Whitetop
Mountamn and Mt Mitchell sites experienced more
than twtce as much cloudmess during the early morn-
ing as 1n the afternoon This phenomenon at summit
sites may be hinked to orographic mechanisms as well
as to the planetary boundary layer lowering below the
level of the mountain top after sunset However, no
such drurnal trends were observed at Mt Moosilauke
and Shenandoah Park

32 Cloud acidity

The natural pH value of rain 1s thought to be ~ 5 6,
which represents the acidity of pure water 1n equilib-
rium with the mean atmospheric concentration of
CO, (~330ppm) This value 1s often used as an
important reference for acidity of cloud water (Robin-
son, 1984, Lacaux et al , 1987) However, the acidity of
natural cloud vanes m different parts of the world
(Table 1) For example, when there 1s a lack of the
common bastc compounds such as NH; or CaCO,,
Charlson and Rodhe (1982) showed that the pH of
rain water, influenced by sulfur compounds, can be
expected to be about 45-50 This result was later
confirmed by Noller et al (1986) Therefore, the pH of
cloud water below ~50 1s assumed to be influenced
by anthropogenic pollution

Table 2 Cloud frequency at MCCP sites, June to September 1986-1988

Elevation
Site (m) 1986 1987 1988 Mean
Cloud frequency (% of hours 1n cloud)
WF1 1483 45 40 25 37
MSt 962 25 21 6 19
SH1 1040 18 7 6 11
WTIt 1689 38 28 26 30
MM1 1950 35 28 23 29
Percentage of total days experiencing some cloud
WF1 1483 79 80 73 77
MS! 962 52 51 22 42
SH1 1040 46 25 25 32
WT1 1689 76 67 62 68
MMI1 1950 84 75 68 76




High-elevation cloud chemistry

Figure 2 shows the frequency distribution of pH for
cloudwater samples collected at the MCCP sites dur-
mg the 3-year (1986-1988) field season For com-
parison, the per cent occurrences of pH values for rain
water at the same locations are also included The pH
recorded at MCCP sites varied from 229 to 73 for
cloud samples, and from 2 75 to 5 68 for precipitation,
which was due 1n part to differences in hiquid-water
content (Aneja et al, 1992) The mean and mmimum
pH are given in Table 3 The mean pH was computed
from the standard transformation

pH mean= —log <% YI[H? ]>,
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where [H*] 1s the hydrogen 10n concentration 1n eq
¢~1 and n 1s the total number of samples

The mean pH value for cloud samples (4 01) at the
Whiteface Mountain summit (site 1) was higher than
at the Whateface slope stte 391, site 2) This result
may reflect the vertical gradient of cloud acidity
because the slope site 1s near the cloud base Several
studies has shown that cloud water 1s more acidic at
elevations near the cloud base (Kins et al, 1988) This
vertical (spatial) variation in cloudwater concentra-
tion may be explained if one assumes that LWC
increases with height above cloud base (Pruppacher
and Klett, 1980) thus providing increased dilution of
pre-existing aerosol, vertically LWC data at the slope
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Fig 2 Frequency distributions of pH for both cloudwater and rainwater samples collected from May to
October 1986-1988 at (a) Whiteface Mountain, summut, (b) Whiteface Mountain, site 2, (c) Mt Moosilauke,
(d) Shenandoah Park, (¢) Whitetop Mountain, (f)Mt Mitchell



2006

Z Liand V P ANEJA

Table 3 Frequency (number of hours) of pH<40, 35, 30 and 25 at MCCP sites, May to October

1986-1988
No of
Site samples pH<40 pH<35 pH<30 pH<25 Mean Min
WF1 634 58 8(373) 221 (140) 126(8) 0 401 275
WF2 66 636(42) 424(28) 909 (6) 0 391 274
MS1 200 715(143)  395(79) 155(31) 0 365 26
SH1 55 855(47) 40 (22) 182(1) 0 365 292
WT1 601 716(430)  371(223) 682 (41) 0 3 259
MM1 477 839 (400) 501 (239) 98547) 021(1) 357 229
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Fig 3 Cloud pH values vs ozone concentrations measured from May to October 1986-1988 at (a)

Whiteface Mountain, summut, (b) Mt Moosilauke, (c) Shenandoah Park, (d) Whitetop Mountain, (¢) Mt
Mitchell
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site (site 2) was not measured and thus, we are
proposing a hypothesis to provide nsight i the
vertical changes 1n cloudwater pH

The mimimum cloud pH was 2 75 at Whiteface site
1, 2 74 at Whateface stte 2, 2 60 at Mt Moostlauke, 2 65
at Shenandoah Park, 2 59 at Whitetop Mountan and
229 at Mt Mitchell Falconer and Falconer (1980)
reported that 90% of all cloudwater samples ranged 1n
pH from 266 to 466 for the periods of August—
September 1977 and 1979 at Whiteface summit
Weathers et al (1986) observed a single acidic cloud
event at several sites 1n the eastern US 1 1984 and
found that the pH ranged from 28 to 309 Several
other investigators studying urban fogwater acidity 1n
California found that the pH was as low as ~22
(Waldman et al , 1982, Munger et al , 1983, Jacobet al,

1985) The sample with pH value of 2 29 measured at
Mt Mitchell in 1986 was more acidic than that re-
ported by Weathers (1986) for other sites 1n the eastern
U S and by Muir et al (1986) 1n an urban midwestern
site It was, 1n fact, close to the level of urban fog water
i Califorma

It 1s documented that cloud or fog with a pH less
than 40 1s believed to cause measurable damage to
foliage and yield of some plants, such as red oak, white
pines and spruce (Jacobson, 1984, Evans 1984, Jacob-
son et al, 1990a) It 1s also known that even one
exposure of pH less than 2 5 can damage certain crop
species (Grantt et al, 1984) The number of hourly
cloud samples, as well as percentage of sampling time,
with pH<40,3 5,3 0and 2 5 are also given 1n Table 3
It appears that Mt Mitchell recerved the most acidic
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cloud exposure during the sampling period, while the
Whiteface summit site received the least actdic expos-
ure Mount Moosilauke and Shenandoah Park sites
are lower 1n elevation, with lower frequency of cloud
immerston, but close to the cloud base, thus the
percentage of total samphng hours with acidic cloud
(pH<40 and 3 5) 1s higher than Whiteface summit
and Whitetop Mountain

Based on an emprrical analysis, 1t 1s found that
cloud pH value 1s a function of ambient temperature
and ambient ozone concentration (Figs 3 and 4) The
best curve fit between pH and ozone 1s

[pH]=4/[0,1",

where 4 and B are constants and greater than zero (for
each case, first- and second-order relationships were
also considered) The coefficients of determation (r2)
were above ~04, while a linear relationship between
cloud pH and ambient temperature (cloud acidity
increasing with increasing ambient temperature) was
obtained, suggesting a seasonal dependence

A seasonal vanation of pH 1n cloud samples can
also be noted (Fig 5) Mean pH values calculated by
monthly basis are shown in Fig 5 for the five stites
during the 3 years The results imply that strong acidic
cloud waters are found 1n warm and humid summer
months Earlier studies by Aneja et al (1990a), who
analysed the cloud pH collected 1n 1987 at Mt Mitch-
ell, utihizing the cloud and ram acidity/conductivity
(CRAC) real-time automated sampler, show a similar
seasonal trend It 1s observed that the high-pressure
system and air stagnation events frequently occurred
during the summer months 1n the eastern U S, which
allows a greater build-up of those acidic aerosols and
atmospheric photochemical oxidants (Aneja et al,
1990b, 1991, Claiborn and Aneja, 1991) Enhanced
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ozone at the locale by cloud passage appears to
contribute to increased cloud acidity as well as to the
concentrations of actdic species in the cloud water Itis
also found that cloudwater pH seasonal variation was
consistent with the trend of atmospheric oxidants,
such as O, (Fig 6) The oxidation of SO, might be a
limiting factor for the generation of atmospheric acid-
1ty (Calvert et al , 1985) The substantial O, concentra-
tion at high elevation 1n the eastern US during the
warm season signifies an oxidizing condition con-
ducive to the formation of HNO, and H,SO, from
atmospheric NO, and SO, When the photochemical
production of H,0, and O; are relatively low 1n the
cold seasons, the amount of oxidants may be limiting
for converting SO, and NO, to H,SO, and HNO,,
which will reduce atmospheric acidity The meteoro-
logical conditions, such as temperature and cloud
liquid-water content, may also affect the variation of
pH 1 the cloud

33 Cloud chemical composttion

Mean morganic compositions of cloudwater sam-
ples collected at five summit sites and one sub-site at
Whiteface Mountam from May to October 1986—1988
are presented m Table 4 We are exploring inter-
relationships with stmple normal linear statistics We
are appealing to the Central Limit Theorem and thus
mean, regression coefficient and correlation, etc, are
approximately normal, even if the original distribu-
tion may not be normal (Dickey, 1991) The mean
morganic 1on balances for all sites were within 6%,
indicating that the concentrations of organic acids,
such as formic and acetic acid, in cloud water at the
sites are small As may be expected, the aver-
age concentrations noted at MCCP sites seem to be
lower than those reported for urban fog water n
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Fig 5 Monthly averaged pH values measured at MCCP sites from May to
October 1986-1988
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Fig 7 Mean 10n concentrations for the MCCP sites, from May to October 1986-1988

Los Angeles and the Midwest (Munger et al, 1983,
Mutr et al, 1986), however, the maximum sulfate
concentration (3700 pueq £ ~*) measured at Mt Mitchell
was close to or higher than those at some of the urban
locations mentioned above The sulfate and nitrate
concentrations were generally higher than fog water
reported at Albany, NY (Fuzzi et al , 1984), and cloud
water at high elevation mn the Sterra Nevada (Collett et
al, 1990) The Ca?* concentration, which 1s derived
from soil dust, was the highest among the trace metals
at most sites, with one exception at Mt Moosilauke,
where the mean Na* concentration, thought to be of
marine origin, was higher than the Ca2* concentra-

tion Significant concentrations of metals and non-sea
salt Ca?* at most sites show that the atr masses are
continental 1 origin (Kim and Aneja, 1992) On some
occastons, extreme high concentrations of these minor
constituents in the cloud were observed, for example,
Cl~ concentration reached 499 peq/~ ! at Mt Moosil-
auke and 691 ueqZ~! at Mt Mutchell, and Ca?*
reached 526 peq/ ! at Whiteface Mountain site 1 and
1189 ueq ¢~ ! at Mt Mitchell However, the high trace-
metal content 1n cloud may catalyse SO, oxidation
when atmospheric H,O, and O; are relatively low
Figure 7 1llustrated the mean total concentrations
for all sites The exposure gradient (only in terms
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of concentration) along north to south Appalachians
can be observed The figure indicates that the nor-
thernmost site, Whiteface Mountain site 1, had the
lowest chemtcal concentration exposure 1n the cloud,
while the southernmost site, Mt Mitchell, experienced
highest concentration exposure The lower elevation
Mt Moosilauke site had more concentrated cloud
than Shenandoah Park and Whitetop Mountain
The frequency distributions of the principal 10ns,
SO2~,NOj and NH;, at the five sttes are illustrated
n Figs 8-10 The frequency distributions of equivalent
concentration of 1ons are based on hourly samples
Our intent 1s to present extremes 1n concentrations
within events based on 1-hour sampling of clouds
Thus volume-weighted averages for events are not

AE(A) 26:11-D

uttlized At the northern sites, over 60% SO2~ concen-
trations were less than 200 ueq /~ ! at Whiteface site 1,
40% at Whiteface site 2 and ~50% at Mt Moosil-
auke At the southern sites, over 40% SO3~ were less
than 200 ueq/ " at Shenandoah Park and Whitetop
Mountain, and 28 5% at Mt Mitchell

34 Ratios of wn concentrations

The ratios of mean major 10n concentrations at the
high elevation sites are histed in Table 5 The equival-
ent ratios of mean SO2~ to NO; were found to be
between ~2 and 39 at the MCCP sites Nearly three
times higher inputs of SO3~ than NOj were noted at
Whiteface Mountain site 2 and two times higher at Mt
Mitchell, suggesting that the contribution of sulfate to
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acidity may be considerable at high elevations n the
eastern US This 1s 1n contrast to the observations in
the western US (1e southern California), for which
nitrate 1s the dominant anion due to the high NO,
emission m those areas (Waldman et al , 1982, Jacob et
al, 1985, 1986) The mean ratios of SO2~ to H* were
greater than 1 0, and mean ratios of NO; to H* were
between 035 and 0 55 at all the high-elevation sttes
Figure 11 shows the relation between sulfate con-
centrations and hydrogen 1on concentrations in the
cloud samples collected at MCCP sites during the
19861988 field seasons It is seen that SO; ™ 1s highly
correlated with hydrogen 1on at all the high-elevation

MCCP sites with a coefficient of determrnation,
R>>08 The sum of SO2™ and NO; vs H* are
llustrated in F1g 12, and 1n general, higher correlation
coefficients are observed at all those sites One sample
collected at Mt Mitchell was noted for very high
concentration of H* (~ 5000 ueq/~! with moderate
SO2~ +NOj (~3500 ueq#~'), indicating that other
species, such as organic acid or HCI, may contribute to
cloud acidity under certain biological and meteoro-
logical conditions

In general, marine-origin species, CI~ and Na*®,
have to balance each other if no other sources are
present (Saxena and Lin, 1990) The overall equivalent
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Cl7/Na™ ratio i our samples 1s 1 32-2 29, indicating
that a large portion of C1™ 1n cloud were from sources
other than sea salt and the roads 1n the northern part
of the country, especially at Whitetop Mountain This
result imphes that C1~ may contribute to the cloud
acadity in the form of HCl from industrial areas
(Petrenchuk and Drozdova, 1966) However, the ratio
C17/(SO2~ +NO; +Cl7), on an equivalent basis,
averaged 002 at Whiteface Mountain, 003 at Mt
Moosilauke and 0 04 at the three southern sites This
indicates that, i general, ClI~ can be neghgible for
contributing acidity to clouds

There are two known processes, scavenging of
particulate sulfate and in-cloud SO, oxidation, which
are responsible for cloud SO2~ concentration The
coefficient of determination between SO2~ and gas-
eous SO, measured at Mt Mitchell during the cloud
events was not good (r>=0 15), indicating that the
particulate sulfate scavenging was responsible for a
majority of the sulfate in the cloud This finding 1s
consistent with the results of Reisinger and Imhoff
(1989), which showed the cloudwater sulfate concen-
tration to be less than free-atr aerosol concentration
The gaseous SO, concentrations were also very low, n
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general, at Mt Mitchell It 1s recognized that aerosol
particles tend to accumulate in the lower troposphere
and can be transported over large distances For this
reason they have the potential of making a significant
contribution to acid deposition at elevated sites that
are remote from source regions Bradow and Aneja

(1988) found that cloudwater composition s very
stmilar to aerosol composition at Mt Mitchell These
results provide the evidence that in-cloud oxidation
contributed little to the chemical composition of cloud
water, while aerosol nucleation may have been the
primary source of sulfate in cloud water, at least at the

Table 5 Ratios of mean 1on concentration 1n cloud samples at MCCP sites for 1986-1988

SOz~ SOz~ SOZ- SO~ NO; NO; NO; CI K*  Ca?* Mg?* NH;
Site  NO;  CI° H* NH; H* NH; C- Na*  Na* Na?* Na* H'
WF1 269 377 121 205 045 076 1404 178 074 439 111 059
WF2 394 56 138 233 035 059 142 19 052 541 136 059
MS1 194 1892 102 25 053 129 978 132 02 077 04l 041
SHI 204 185 113 178 055 087 905 167 03 147 048 064
WTI 236 209 116 235 049 099 884 229 036 348 076 05
MM1 278 1737 124 262 044 094 624 17 04 285 072 047
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Mt Mitchell high-elevation site However we cannot
exclude the possibihity that the aerosol itself may have
resulted from an earher in-cloud oxidation

4 SUMMARY AND CONCLUSIONS

The purpose of this study was to charactenze cloud
chemistry exposures at high elevations over the
eastern US High-elevation locations wn the eastern
US were frequently immersed 1n clouds Cloud fre-
quency ranged from 32 to 77% of the days at these
sites More than 90% of cloud samples at those sites
were acidic (pH <50) One extreme value of pH 229
was recorded at Mt Mitchell The observations we
report here document the presence of chemical pollu-
tants that can exert a more subtle stress on these high-

elevation ecosystems (Bormann, 1988), in particular,
ozone and acid deposttion (predominantly as acid
cloud water) (Hertel et al, 1990)

The 1onic composttion of the cloud water from each
field season and for each site was domnated by sulfate
and nitrate anions (48-50%), and hydrogen and am-
monium cations (43-47%) The southernmost site, Mt
Mitchell, recerved, 1n general, the most acidic clouds
(mean pH 3 57) and major chemical exposures (total
averaged 1on concentration 1586 peq/” ') The
Whiteface summut, the northernmost site, received the
least acidic cloud (mean pH 4 01) and chemical expos-
ures (total averaged 1on concentration 691 ueq/ 1)
compared to the other MCCP sites

Cloud pH and major chemical components exhib-
tted a seasonal trend with the maxima during the
summer months, and correlated with temperature and
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ozone concentrations The seasonal variation may be
due to (1) high ozone concentration during the summer
which provides the condition of conversion of SO,
and NO, to sulfate and nitrate in the gas phase and
cloud droplets, (11) increased reaction rate dependent
on temperature, (1) other meteorological conditions,
such as increased high-pressure systems and reduced
hquid-water content

The mean equivalent ratios of SO2~ to NO; were
found to be between 19 and 39 at these sites It 1s
observed that SO2~ was highly correlated with hydro-
gen 10n for all events sampled, indicating that the
contribution to cloud acidity by sulfate may be signi-
ficant
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